Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hossein Aghabozorg,* Mohammad Ghadermazi and Farshid Ramezanipour

Department of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran

Correspondence e-mail:
aghabozorg@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.068$
$w R$ factor $=0.138$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

A proton transfer compound: propane-1,3-diaminium-pyridine-2,6-dicarboxylate-pyridine-2,6-dicarboxylic acid-water (2/2/2/5)

The title compound, $\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} . \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}{ }^{2-} . \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}$. $2.5 \mathrm{H}_{2} \mathrm{O}$, is a proton-transfer system obtained from pyridine-2,6-dicarboxylic acid and propane-1,3-diamine. Both neutral and dianionic forms of the diacid are observed in the crystal structure. The molecular structure contains also the diprotonated form of propane-1,3-diamine as well as water molecules. In the crystal structure, a wide range of hydrogen-bonding interactions connect the various fragments into a supramolecular structure.

Comment

Dicarboxylic acids possess a good potential to be used as proton donors in the synthesis of proton transfer compounds. Among these diacids, pyridine-2,6-dicarboxylic acid $\left(\right.$ pydcH $\left._{2}\right)$ has been used by our research group during recent years for the preparation of such compounds. For example, (pydaH)(pydcH), in which 2,6-pyridinediamine (pyda) was used as a proton acceptor (Aghabozorg, Akbari Saei \& Ramezanipour, 2005). We have also used ethylenediguanidine (EDG) as an acceptor in the proton-transfer compound $\left(\mathrm{EDGH}_{2}\right)$ (pydc) $\cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Moghimi, Aghabozorg, Sheshmani, Kickellbick \& Soleimannejad, 2005). The crystal structure of (pyrimH) $\left\{\mathrm{H}(\mathrm{Hpydc})_{2}\right\}$ has also been reported. Here $N, N^{\prime}-$ diethyl-2-amino-6-methyl-4-pyrimidinol (pyrim) acted as a proton acceptor (Aghabozorg, Soleimannejad et al., 2005). Creatinine (creat) is another acceptor, forming a proton transfer compound, (creatH) $(\mathrm{pydcH}) \cdot \mathrm{H}_{2} \mathrm{O}$ (Moghimi, Sharif et al., 2005). We reported also on (phenH) $)_{2}$ (pydc), synthesized using 1,10-phenanthroline (phen) (Moghimi, Sheshmani et al., 2005). Compound $(\mathrm{GH})_{2}($ pydc $)$ was another product, prepared from guanidine (G) and pydcH H_{2} (Moghimi et al., 2004). Additionally, we have worked on a derivative of pydcH ${ }_{2}$, that is, 4-hydroxy-pyridine-2,6-dicarboxylic acid (hypydcH ${ }_{2}$). Two distinct proton-transfer compounds were synthesized using hypydcH H_{2} as a donor and guanidine as an acceptor (Moghimi, Aghabozorg, Sheshmani \& Soleimannejad, 2005; Moghimi, Aghabozorg, Soleimannejad \& Ramezanipour, 2005). After synthesis of proton-transfer compounds, the next step has always been the use of these compounds to prepare metal complexes. Often, anionic fragments of these compounds act as ligands. The self-assembling characteristics of these complexes (Aghabozorg, Moghimi et al., 2005; Moghimi, Sharif et al., 2005; Moghimi, Sheshmani et al., 2005; Moghimi, Sheshmani et al., 2004) illustrate the suitability of using proton-transfer compounds in the preparation of supramolecular systems. We report here a new protontransfer compound, (I), obtained from pydcH ${ }_{2}$ as a donor and propane-1,3-diamine as an acceptor.

Received 12 December 2005 Accepted 15 February 2006 Online 24 February 2006

The asymmetric unit of the title compound, (I), is shown in Fig. 1, and selected bond distances and angles are given in Table 1. The structure of (I) contains neutral pydcH_{2} molecules, dianionic (pydc) $)^{2-}$ species and water molecules. The negative charge of the anions is neutralized by dicationic propane-1,3-diaminium species. A double proton transfer has occurred from pydcH_{2} to propane-1,3-diamine during the reaction. The use of propane-1,3-diamine as a proton acceptor has been reported in several publications, all of which show the formation of the diprotonated form of this diamine (Loiseau \& Ferey, 2005, 2004; Kissick \& Chippindale, 2002). On the other hand, propane-1,3-diamine has also been shown to act as a ligand in a number of metal complexes (Luo et al., 2003; Kabak et al., 1999; Tong et al., 1999). Accordingly we can anticipate that (I) is an appropriate compound to be used for the synthesis of metal-organic systems, owing to the ability of both its cationic and its anionic fragments to form metal complexes, as mentioned above.

A remarkable feature in the crystal structure of compound (I) is the presence of a large number of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 2). The shortest hydrogen bond is $\mathrm{O} 3 A-\mathrm{H} 3 \mathrm{O} A \cdots \mathrm{O} 7 A(x+1, y+1$, z) with $D \cdots A=2.453(4) \AA$, a very strong interaction. However, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions with $D \cdots A$ distances as long as 3.0802 (4) \AA are also observed in the crystal structure (Table 2). The hydrogen bonds connect the different components, so forming infinite layers, which are finally linked together to form a hydrogen-bonded three-dimensional network (Fig. 2). Compound (I), consequently, can be considered as a supramolecuar structure formed by noncovalent interactions.

Experimental

The reaction of pyridine-2,6-dicarboxylic acid with propane-1,3diamine in a 1:2 molar ratio in THF led to the formation of a white precipitate, which was filtered off and dried. The resulting powder was dissolved in water to give colorless crystals of compound (I) after four weeks.

Figure 1
The asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Figure 2
A view down the a axis of the crystal packing of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Crystal data	
$\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}{ }^{2-} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4} \cdot-$	$Z=4$
$2.5 \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.474 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=453.41$	Mo $K \alpha$ radiation
Triclinic, $P \overline{1}$	Cell parameters from 24
$a=7.8724(16) \AA$	reflections
$b=13.534(3) \AA$	$\theta=9-12^{\circ}$
$c=20.986(4) \AA$	$\mu=0.12 \mathrm{~mm}^{-1}$
$\alpha=106.64(3)^{\circ}$	$T=193(2) \mathrm{K}$
$\beta=90.54(3)^{\circ}$	Prism, colorless
$\gamma=106.54(3)^{\circ}$	$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$
$V=2043.5(7) \AA^{\circ}$	

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}{ }^{2-} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4} \cdot- & Z=4 \\
\quad 2.5 \mathrm{H}_{2} \mathrm{O} & D_{x}=1 \\
M_{r}=453.41 & \text { Mo } \mathrm{Kc} \\
\text { Triclinic, } P \overline{1} & \text { Cell pa } \\
a=7.8724(16) \AA & \text { refl } \AA . \\
b=13.534(3) \AA & \theta=9 \\
c=20.986(4) \AA & \mu=0 . \\
\alpha=106.64(3)^{\circ} & T=19 \\
\beta=90.54(3)^{\circ} & \text { Prism, } \\
\gamma=106.54(3)^{\circ} & 0.30 \times
\end{array}
$$

$$
V=2043.5(7) \AA^{3}
$$

Data collection

Rebuilt Syntex $\mathrm{P}_{1} /$ Siemens P3
four-circle diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
8323 measured reflections
7768 independent reflections
3755 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.138$
$S=1.02$
7768 reflections
572 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

N3-C15	1.465 (6)	O3A-C7A	1.269 (5)
N4-C17	1.470 (5)	$\mathrm{O} 4 A-\mathrm{C} 7 A$	1.222 (5)
O1-C1	1.273 (5)	O5 $A-\mathrm{C} 8 A$	1.258 (5)
$\mathrm{O} 2-\mathrm{C} 1$	1.233 (4)	$\mathrm{O} 5 A-\mathrm{H} 1 O A$	1.4247
O3-C7	1.243 (5)	O6 $A-\mathrm{C} 8 A$	1.226 (5)
O4-C7	1.232 (5)	$\mathrm{O} 7 A-\mathrm{C} 14 A$	1.286 (5)
C1-C2	1.514 (5)	$\mathrm{O} 8 A-\mathrm{C} 14 A$	1.236 (4)
C6-C7	1.522 (5)	$\mathrm{C} 1 A-\mathrm{C} 2 A$	1.518 (5)
$\mathrm{N} 3 A-\mathrm{C} 15 A$	1.478 (4)	C6 $A-\mathrm{C} 7$ A	1.505 (5)
$\mathrm{N} 4 A-\mathrm{C} 17 A$	1.478 (5)	$\mathrm{C} 8 A-\mathrm{C} 9 A$	1.525 (5)
$\mathrm{O} 1 A-\mathrm{C} 1 A$	1.296 (5)	$\mathrm{C} 13 A-\mathrm{C} 14 A$	1.511 (5)
$\mathrm{O} 2 A-\mathrm{C} 1 A$	1.222 (4)		
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	125.7 (4)	$\mathrm{O} 2 A-\mathrm{C} 1 A-\mathrm{O} 1 A$	125.0 (4)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	118.6 (4)	$\mathrm{O} 2 A-\mathrm{C} 1 A-\mathrm{C} 2 A$	118.9 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	115.8 (3)	$\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A$	116.0 (3)
$\mathrm{O} 4-\mathrm{C} 7-\mathrm{O} 3$	125.7 (4)	$\mathrm{O} 4 A-\mathrm{C} 7 A-\mathrm{O} 3 A$	124.5 (4)
O4-C7-C6	118.8 (4)	$\mathrm{O} 4 A-\mathrm{C} 7 A-\mathrm{C} 6 A$	120.6 (4)
O3-C7-C6	115.5 (3)	$\mathrm{O} 3 A-\mathrm{C} 7 A-\mathrm{C} 6 A$	114.9 (3)
O6-C8-O5	126.4 (4)	$\mathrm{O} 6 A-\mathrm{C} 8 A-\mathrm{O} 5 A$	125.8 (4)
O6-C8-C9	116.9 (4)	$\mathrm{O} 6 A-\mathrm{C} 8 A-\mathrm{C} 9 A$	117.0 (4)
O5-C8-C9	116.6 (3)	$\mathrm{O} 5 A-\mathrm{C} 8 A-\mathrm{C} 9 A$	117.2 (3)
$\mathrm{O} 8-\mathrm{C} 14-\mathrm{O} 7$	125.2 (4)	$\mathrm{O} 8 A-\mathrm{C} 14 A-\mathrm{O} 7 A$	124.6 (4)
O8-C14-C13	117.6 (4)	$\mathrm{O} 8 A-\mathrm{C} 14 A-\mathrm{C} 13 A$	119.0 (4)
O7-C14-C13	117.2 (3)	$\mathrm{O} 7 A-\mathrm{C} 14 A-\mathrm{C} 13 A$	116.4 (3)
C16-C15-N3	119.2 (4)	$\mathrm{N} 3 A-\mathrm{C} 15 A-\mathrm{C} 16 A$	112.1 (3)
N4-C17-C16	114.1 (4)	$\mathrm{N} 4 A-\mathrm{C} 17 A-\mathrm{C} 16 A$	112.2 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-173.0 (4)	$\mathrm{O} 2 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{N} 1 A$	170.7 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	6.1 (5)	$\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{N} 1 A$	-9.4 (5)
N1-C6-C7-O4	179.7 (4)	$\mathrm{N} 1 A-\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{O} 4 A$	174.4 (4)
N1-C6-C7-O3	0.6 (5)	$\mathrm{N} 1 A-\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{O} 3 A$	-5.5 (5)
$\mathrm{O} 6-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 2$	171.3 (3)	$\mathrm{O} 6 A-\mathrm{C} 8 A-\mathrm{C} 9 A-\mathrm{N} 2 A$	-170.2 (3)
$\mathrm{O} 5-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 2$	-6.1 (5)	$\mathrm{O} 5 A-\mathrm{C} 8 A-\mathrm{C} 9 A-\mathrm{N} 2 A$	8.2 (5)
N2-C13-C14-O8	-166.1 (3)	$\mathrm{N} 2 A-\mathrm{C} 13 A-\mathrm{C} 14 A-\mathrm{O} 8 A$	165.6 (3)
N2-C13-C14-O7	11.6 (5)	$\mathrm{N} 2 A-\mathrm{C} 13 A-\mathrm{C} 14 A-\mathrm{O} 7 A$	-15.0 (5)
N3-C15-C16-C17	-39.1 (8)	$\mathrm{N} 3 A-\mathrm{C} 15 A-\mathrm{C} 16 A-\mathrm{C} 17 A$	-153.7 (3)
C15-C16-C17-N4	-155.5 (5)	$\mathrm{C} 15 A-\mathrm{C} 16 A-\mathrm{C} 17 A-\mathrm{N} 4 A$	-53.4 (4)

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H1N3 $\cdots \mathrm{O}^{\mathrm{i}}$	0.91	2.11	$2.841(4)$	136
N3-H1N3 $\cdots \mathrm{O}^{\mathrm{i}}$	0.91	2.29	$2.997(4)$	135
N3-H2N3 $\cdots \mathrm{O}^{\mathrm{i}} W$	0.91	2.03	$2.859(4)$	150
N3-H3N3 $\cdots \mathrm{O}^{\mathrm{i}}$	0.91	2.23	$2.982(4)$	140
N3-H3N3 $\cdots \mathrm{N} 2^{\mathrm{i}}$	0.91	2.28	$3.077(4)$	146

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-H1N4 \cdots N1 ${ }^{\text {11 }}$	0.91	2.12	3.003 (4)	162
N4-H2N4. ${ }^{\text {a }}$ O ${ }^{\text {iii }}$	0.91	2.09	2.938 (4)	155
N4-H3N4..O3 ${ }^{\text {iv }}$	0.91	1.92	2.823 (4)	174
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O}^{\text {v }}$	0.94	1.61	2.457 (4)	147
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O}^{\text {v}}$	0.94	1.61	2.457 (4)	147
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots 8^{\text {v }}$	0.94	2.30	3.078 (4)	140
O5-H1O1 \cdots O1	1.20	1.28	2.471 (4)	170
$\mathrm{N} 3 A-\mathrm{H} 1 \mathrm{~N} A \cdots \mathrm{~N} 1 A^{\text {vi }}$	0.91	2.09	2.963 (4)	161
$\mathrm{N} 3 A-\mathrm{H} 1 \mathrm{~N} A \cdots \mathrm{O} 3 A^{\text {vi }}$	0.91	2.29	2.737 (4)	110
$\mathrm{N} 3 A-\mathrm{H} 2 \mathrm{~N} A \cdots \mathrm{O} 8 A^{\text {vii }}$	0.91	2.11	2.919 (4)	147
$\mathrm{N} 3 A-\mathrm{H} 3 \mathrm{~N} A \cdots \mathrm{O} W$	0.91	1.89	2.791 (4)	173
$\mathrm{N} 4 A-\mathrm{H} 1 \mathrm{~N} B \cdots \mathrm{~N} 2 A$	0.91	2.29	3.116 (4)	152
$\mathrm{N} 4 A-\mathrm{H} 1 \mathrm{~N} B \cdots \mathrm{O} 7 A$	0.91	2.35	3.074 (4)	137
$\mathrm{N} 4 A-\mathrm{H} 2 \mathrm{~N} B \cdots \mathrm{O} 2 A$	0.91	2.15	2.895 (4)	139
$\mathrm{N} 4 A-\mathrm{H} 2 \mathrm{~N} B \cdots \mathrm{O} A$	0.91	2.18	2.847 (4)	130
$\mathrm{N} 4 A-\mathrm{H} 3 \mathrm{~N} B \cdots \mathrm{O} W^{\text {viii }}$	0.91	2.03	2.836 (4)	147
$\mathrm{O} 1 A-\mathrm{H} 1 \mathrm{O} A \cdots \mathrm{O} 5 A$	1.07	1.43	2.475 (4)	167
$\mathrm{O} 3 A-\mathrm{H} 3 \mathrm{O} A \cdots \mathrm{O} 7 A^{\text {ix }}$	0.95	1.52	2.453 (4)	167
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 8^{\mathrm{x}}$	0.95	1.91	2.861 (4)	174
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 2 W^{\text {viii }}$	0.95	2.08	2.876 (4)	140
$\mathrm{O} 2 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 4^{\text {vi }}$	0.95	2.02	2.820 (4)	141
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 4 A^{\mathrm{xi}}$	0.95	1.90	2.705 (4)	142
$\mathrm{O} 3 W-\mathrm{H} 1 W 3 \cdots \mathrm{O} 4 W$	0.95	1.90	2.814 (4)	161
$\mathrm{O} 3 W-\mathrm{H} 2 W 3 \cdots \mathrm{O} 6^{\text {xii }}$	0.95	1.74	2.684 (4)	175
$\mathrm{O} 4 W-\mathrm{H} 1 W 4 \cdots \mathrm{O} 1 W$	0.95	1.83	2.781 (4)	175
$\mathrm{O} 4 W-\mathrm{H} 2 W 4 \cdots \mathrm{O} 8 A^{\text {vii }}$	0.95	2.01	2.934 (4)	166
$\mathrm{O} 5 W-\mathrm{H} 1 W 5 \cdots \mathrm{O} 2 W$	0.95	1.94	2.821 (4)	154
$\mathrm{O} 5 W-\mathrm{H} 2 W 5 \cdots \mathrm{O} 6 A^{\text {vi }}$	0.95	1.73	2.656 (4)	163

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x+1, y, z+1$; (iii) $x+1, y+1, z+1$; (iv) $x+1, y, z$; (v) $x, y+1, z$; (vi) $-x+1,-y+1,-z+1$; (vii) $-x,-y,-z+1$; (viii) $x-1, y, z$; (ix) $x+1, y+1, z$; (x) $x, y+1, z+1$; (xi) $x, y-1, z$; (xii) $x, y, z+1$.

The H atoms of the carboxyl and NH_{3} groups, and of the water molecules, were located in difference Fourier syntheses and refined as riding atoms with distances constraints of $\mathrm{N}-\mathrm{H}=0.91 \AA, \mathrm{O}_{\text {water }}-\mathrm{H}=$ $0.95 \AA$ and $\mathrm{O}_{\text {carboxyl }}-\mathrm{H}=0.94-1.42 \AA\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N}, \mathrm{O})\right]$. There are some long $\mathrm{O}-\mathrm{H}$ bonds, for example, $\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1=1.28 \AA$ and $\mathrm{O} 5 A-\mathrm{H} 1 \mathrm{O} A=1.42 \AA$. We believe that this is connected with the possible superposition of two different tautomers, which can lead to pseudosymmetric hydrogen bonds or long $\mathrm{O}-\mathrm{H}$ distances. The remainder of the H atoms were included in calculated positions and refined as riding atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {methine }}\right)$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methylene }}\right)$, and $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$.

Data collection: P3/PC (Siemens, 1989); cell refinement: P3/PC; data reduction: $P 3 / P C$; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1998); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

References

Aghabozorg, H., Akbari Saei, A. \& Ramezanipour, F. (2005). Acta Cryst. E61, o3242-o3244.
Aghabozorg, H., Moghimi, A., Manteghi, F. \& Ranjbar, M. (2005). Z. Anorg. Allg. Chem. 631, 909-913.
Aghabozorg, H., Soleimannejad, J., Sharif, M. A., Sheshmani, S. \& Moghimi, A. (2005). Anal. Sci. 21, x73-x74.

Kabak, M., Elmali, A., Kavlakoglu, E., Elerman, Y. \& Durlu, T. N. (1999). Acta Cryst. C55, 1650-1652.
Kissick, J. L. \& Chippindale, A. M. (2002). Acta Cryst. E58, m80-m82.
Loiseau, T. \& Ferey, G. (2004). Acta Cryst. C60, i30-i32.
Loiseau, T. \& Ferey, G. (2005). Acta Cryst. C61, m315-m317.
Luo, J., Zhou, X. G., Weng, L. H. \& Hou, X. F. (2003). Acta Cryst. C59, m519m522.
Moghimi, A., Aghabozorg, H., Sheshmani, S., Kickellbick, G. \& Soleimannejad, J. (2005). Anal. Sci. 21, x141-x142.
Moghimi, A., Aghabozorg, H., Sheshmani, S. \& Soleimannejad, J. (2005). Anal. Sci. 21, x71-x72.

organic papers

Moghimi, A., Aghabozorg, H., Soleimannejad, J. \& Ramezanipour, F. (2005). Acta Cryst. E61, o442-o444.
Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M. \& Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902-908.

Moghimi, A., Sheshmani, S., Shokrollahi, A., Aghabozorg, H., Shamsipur, M., Kickellbick, G., Carla Aragoni, M. \& Lippolis, V. (2004). Z. Anorg. Allg. Chem. 630, 617-624.

Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. \& Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 160-169.
Sheldrick, G. M. (1998). SHELXTL-Plus. Version 5.10. Bruker AXS Inc. Madison, Wisconsin, USA
Siemens (1989). P3/PC. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tong, Y. X., Tong, M. L., Yu, X. L. \& Chen, X. M. (1999). Acta Cryst. C55, 180182.

[^0]: (C) 2006 International Union of Crystallography

